Adobe AEM Dispatcher Caching Basics.

Rookie “getting started” tutorial. Impressions of familiarity with Adobe
AEM Dispatcher from present junior developer for future juniors.

Part 0. Introduction.

Current tutorial consists of 5 parts.

Part 1. Abstract view of the Adobe AEM Dispatcher and of its goals.
Part 2. Environment installation.

Part 3. Environment initial settings for enable cache.

Part 4. Cache invalidation.

Part 5. Useful external tools for advanced using of the dispatcher.



Part 1. Abstract view of the Adobe AEM Dispatcher
and of its goals.

There are two basic approaches to web publishing:

1.

Static Web Servers: such as Apache or IIS, are very simple, but fast.

The first static web servers were created at the era of the web childhood in the
middle of the 90-s years of the XX-th century.

Apache HTTP Server (“httpd”) was one of them and it became very quickly the
most popular static web server. The Apache HTTP Server (“httpd”) was launched in
1995 and it has been the most popular web server on the Internet since April 1996. It
has celebrated its 20th birthday in February 2015. The Apache HTTP Server creation
became very important for open source world which includes java open source software.
This server was created by 10-15 developers which formed original Apache Group. In
1999 members of the Apache Group formed the Apache Software Foundation (ASF)
which greatly expanded the number of Open Source software projects. For example,
java applications development is almost painless today thanks to a dozens projects of
Apache Open Source software such as felix (OSGi implementation), jackrabbit (jcr
implementation) and sling which are used in Adobe AEM.

One of the greatest feature of the static web servers is that their abilities and
properties may be expanded, improved and customized by the 3rt party plugins.



2. Content Management Servers: which provide dynamic, real-time, intelligent content, but
require much more computation time and other resources.

Content
Repository

Layout
Engine

We may use the 2nd approach by default when are working with Adobe AEM.
Minimal environment configuration for web publishing with Adobe AEM consists of two
AEM instances: author and publish.



3. The Dispatcher helps realize both approaches at the same time for building and
configuring both fast and dynamic environment. The dispatcher works as part of a static
HTML server (such as Apache). It means that the dispatcher is only the 3rd party plugin
(plugins are called “modules” for apache httpd) for static web servers. This plugin was
written by Adobe.

Content
JSanesiont....

Layout
Engine

Dispatcher s

Such environment provides caching with aim of:

e storing (or “caching”) as much of the site content as is possible, in the form of a static
website;

e accessing the layout engine as little as possible.

It means that:

e static content is handled with exactly the same speed and ease as on a static web
server; additionally you can use the administration and security tools available for your
static web server(s);

e dynamic content is generated as needed, without slowing the system down any more
than absolutely necessary.



The dispatcher contains mechanisms to generate and update static HTML based on the
content of the dynamic site. You can specify in detail which documents are stored as static files

and which are always generated dynamically.

If not cachable,

Document
Request

Document

DISPATCHER

The scheme of how dispatcher returns documents.

CACHE

~Is the

Yes, take
document from
cache.

L

request
achable?

Is is
cached?

Is it up to
date?

— Ng ————=

return document. —‘

Render
Ng ———» the

Document

Ng ————=

If cachable,

put document into cache

Except benefits of caching the dispatcher provides the benefits of load balancing. Load
Balancing is the practice of distributing the computation load of the website across several
instances of AEM. You gain increased processing power and increased fail-safe coverage.

Dispatcher

|

Content
RAepoaito

Layout
Engine

Layout
Engine




Summary

The main goals of the dispatcher:
e Caching;
e Load balancing.

The dispatcher provides such additional goals like:
e Security;
e Request processing management.

You may study more detailed documentation on the next page:
https://docs.adobe.com/docs/en/dispatcher.html



https://docs.adobe.com/docs/en/dispatcher.html

Part 2. Environment installation.

We consider for demonstration purposes only local environment installation in our
“getting started” tutorial. We assume that you already have installed AEM author
(http://localhost:4502) and publish (http://localhost:4503) instances. Then you need to install
only couple of things for dispatcher working environment.

1. You need to choose one of three supported static web servers and install it:
- Apache HTTP Server (“httpd”);
- Microsoft IIS;
- Oracle IPlanet.

2. Then you need to install and enable Adobe AEM Dispatcher module (plugin) for
corresponding static web server.

2.1 Static web server installation.

We consider for demonstration purposes installation of Apache HTTP Server (“httpd”).
We assume that your local environment is based on some kind of Windows OS family. If you
have another OS family then installation steps will be quite similar.

We assume that we have next working environment:
1. Windows 7 Professional SP1 x64 OS;
2. Adobe AEM 6.1 author instance (http://localhost:4502);
3. Adobe AEM 6.1 publish instance (http://localhost:4503).

Important note: before downloading httpd distributives you should to check if
corresponding dispatcher module exists for the version of your future httpd server. Different
versions of dispatcher module have been written by Adobe and shared on the next page:
https://www.adobeaemcloud.com/content/companies/public/adobe/dispatcher/dispatcher.html



http://localhost:4502/
http://localhost:4503/
http://localhost:4502/
http://localhost:4503/
https://www.adobeaemcloud.com/content/companies/public/adobe/dispatcher/dispatcher.html

You can see that for the Windows OS family there are dispatcher modules only for
apache httpd 2.2 version. You may download from this page one of the next archives:
dispatcher-apache2.2-windows-x86-4.2.0.zip

or
Dispatcher-apache2.2-windows-x86-ssl-4.2.0.zip.

We will use one of this archives in the next paragraph which is about how to enable
dispatcher module on the static web server.

ﬁ}lspatcher for Apache HTTP Server 2. 2|

dispatcher-apache2.2-aix-powerpc-4.2_0.tar.gz
AlX PowerPC
dispatcher-apacheZ.2-aix-powerpc-ssi-4.2 0.1ar.gz

AlX PowerPC Open5SL 1.0x

dispatcher-apache2.2-aix-powerpcg4-4.2 0 tar.gz

AIX PowerPC G4bit

dispatcher-apache?. 2-aix-powerpcbd-ssl-4.2.0.tar.gz
AlX PowerPC B4bit OpenS5L 1.0.x

dispatcher-apache2.2-linux-i686-4.2_ 0.tar.gz
Linux iGB6
dispatcher-apache2.2-linux-i686-ss51-4.2.0.tar.gz

Linux i686 OpenS5L 1.0.x

dispatcher-apache2.2-linux-x86-64-4.2 0.tar.gz
Linux x86 64bit

dispatcher-apache? 2-linux-x86-64-ss1-4.2 0.tar.gz
Linux x86 64bit Gpens5L 1.0.x
dispatcher-apache2.2-

Sclaris AMD E4bit

-solaris-amdbed-4_2 0. tar.gz

dispatcher-apache2.2-solaris-amd6&4-ssl-4.2 0.tar.gz

Solaris AMD &4bit Opens5L 1.0.x

dispatcher-apache2.2-solaris-i386-4.2.0.tar.gz
Solaris i386
dispatcher-apache2.2-solaris-i386-ss51-4.2_0.tar.gz

Solaris i386 Open55L 1.0.x

dispatcher-apache?.2-solaris-sparc-4.2.0.tar.gz

Solaris SPARC

dispatcher-apache?2.
Solaris SPARC OpenSSL 1.

dispatcher-apache?2.2-solaris—-sparcv9-4.2.0.tar.gz

Solaris SPARC-vE

dispatcher-apache?2. 2-solaris-sparcv9-5sl-4.2 0. tar.gz

Solaris SPARC-vE Opan35Ll 1.0.x

dispatcher-apache2.2-windows-x86-4.2 0.zip

Windows x86

dispatcher-apache?. 2-windows—xBb-s51-4.2.0.zip
Windows x86 OpenS5L 1.0.x




Therefore we need to install apache httpd of version 2.2 and for x86 platform because
we have windows OS family environment and only this couple of dispatcher modules exists for
our case. Then you may see on the apache httpd download page:

https://httpd.apache.org/download.cqi, that “Apache httpd for Microsoft Windows is available from
a number of third party vendors”.

Downloading the Apache HTTP Server

Use the links below to download the Apache HTTP Server from one of our mirrors. You

Only current recommended releases are available on the main distribution site and its n

ppache hitpd for Microsoft Windows is available from a number of third party vendors.

This means that you will not find apache httpd binaries for Windows OS family on the
httpd apache web site but you can choose one of the third party vendors. Vendors have built
such binaries from sources and share binaries on their third party web sites.

https://httpd.apache.org/docs/current/platform/windows.html#down

Downloading Apache for Windows

The Apache HTTP Server Project itself does not proy

If you cannot compile the Apache HTTP Server your:
Fopular options for deploying Apache httpd, and, opt

« ApacheHaus
Apache Lounge

BitNami WAMP Stack
WampServer
XAMPP

Let choose the first one: ApacheHaus. http://www.apachehaus.com/cgi-bin/download.plx
Their binaries have been compiled with Visual Studio:

Apache Haus Downloads

Apache binaries are built with the original source released by the Apache Software Foundation {unless noted) and have been compiled

with Visual Studio 2008 (VC9) or Visual Studio 2012 (VC11) to obtain higher performance and better stability than the binaries built by the
Apache Software Foundation


https://httpd.apache.org/download.cgi
https://httpd.apache.org/docs/current/platform/windows.html#down
https://httpd.apache.org/docs/current/platform/windows.html#down
http://www.apachehaus.com/cgi-bin/download.plx

You can find binaries for Apache 2.2 and notice that binaries for that httpd version have
been compiled with Visual Studio 2008 (VC9).

Apache 2.2|Server Binaries

Apache 2.2.x[vcs]

Built using C sources from the ASF and OpenSSL onMSUEI Studio 2008 'VCEI"‘.|
See readme_first.himl file for details.

Apache 2.2.31 |hﬁpd—2.2.31—x85—r4.zip| 6,0398 KB DownloadfLocations
with Open3SSL 1.0.2h, Zlib 1.2.8 (mod_deflate), APR 1.5.2, 7157 a

APR-ULtI 1.5.4, PCRE 838, IPvG and TLS SNI enabled

SHA1 Checksum: c3406845b6b06T591d5d9064d93fc554f2151736

Therefore you also need appropriate Microsoft Visual C++ Redistributable Package
(x86):

Visual Studio Redistributable Packages

Microsoft Visual C++ 2015 Redistributable
Microsoft Visual C++ 2015 Redistributable Packages to be used for our VC14 builds

Microsoft Visual C++ 2015 Redistributable Package (X86 & Microsoft Download 131-139  Direct Download Link
x64) MB

The Microsoft Visual C++ 2015 Redistributable Package (%86 &

x64) installs runtime components of Visual C++ Libraries

required to run applications developed with Visual C++on a

computer that does not have Visual C++ 2015 installed.

Microsoft Visual C++ 2012 Redistributable
Microsoft Visual C++ 2012 Redistributable Packages to be used for our VC11 builds

Microsoft Visual C++ 2012 Update 4 Redistributable Package Microsoft Download 62-689MB Direct Download Link
(%86 & x64)

The Microsoft Visual C++ 2012 Update 4 Redistributable
Package (X86 & x64) installs runtime components of Visual C++
Libraries required to run applications developed with Visual
C++on a computer that does not have Visual C++ 2012
installed.

Microsoft Visual C++ 2008 Redistributable
Microsoft Visual C++ 2008 Redistributable Packages to be used for our VCO builds

Microsoft Visual C++ 2008 SP1 Redistributable Package Microsoft Download 17T KB IDired Download Link I
(xB6)

The Microsoft Visual C++ 2008 SP1 Redistributable Package

(x86) installs runtime components of Visual C++ Libraries

required to run applications developed with Visual C++on a

computer that does not have Visual C++ 2008 installed.

Finally you have downloaded all necessary distributives for apache httpd installation:
1. “vcredist_x86.exe” - Microsoft Visual C++ 2008 SP1 Redistributable Package (x86);



2. “httpd-2.2.31-x86-r4.zip” - Apache HTTP Server (“httpd”).

Install “Microsoft Visual C++ 2008 SP1 Redistributable Package (x86)” firstly. Its
installation is trivial with help of installation wizard and consists in general from dumb clicking on
the “next” button and license agreement.

Then extract httpd archive and put Apache22 folder from it to the root of C: logic disk.
Your httpd folder will be C:\Apache22.

Open cmd console and go to C:\Apache22\bin directory.
BER C\Windows'system32hcmd exe

“Apachez2\bin

Then type “httpd” command for starting apache httpd server.
Bl C\Windows\system32\cmd.exe - httpd

C:\Apache22bin

che22\bin=httpd




Httpd has been started. You may check its working by typing http://localhost in your
browser. If it is ok you will see home page.

Apache Haus

MApache™ binaries for Windows® Readme First

Welcome,

That's right! If you are seeing this it means that the web server installed at this site is working properly, but
has not yet been configured.

““ *s If you are a member of the general public:

The fact that you are seeing this page indicates that the website you just visited is either just installed,

@o experiencing problems, or is undergoing routine maintenance.
If you are the website administrator:

You may now add content to the /htdocs directory. Note that until you do so, people visiting your website will
see this page, and not your content.

Server Details Support
Apache Version: 2.2.31 Win32 Start off with the server manual. Apache Server on Windows Community Forums
Build Date: May 6, 2016 Apache Haus Forum

The Apache 2.2 Manual

Apache Lounge Forum

OpenSSL Version: 1.0.2h
APR Version: 1.5.2 The Fine Print
APR-Utl Version: 1.5.4 —
i i . WARRANTIES A 5
LibXML2 Version: COPYRIGHT HOLDE , DAMAGES OR OTHER LIABILITY, WHETHER TN AN ACTION OF CONTRACT, TORT OR
LUA Version: OTHERWISE, ARTSING IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS. IN THE SOFTWARE.

NGHTTP2 Version: This distribution includes cryptographic saftware, The country in which you are currently may have restrictions on the

PCRE Version: 8.33 impart, possession, and use, and/or re-expaort to another country, of encryption software, BEFORE using any

: S encryphion software, please chack the country's laws, regulations and policies concaming the import, possession, ar
50Lite3 Version: 3.9.2 use, and re-export of encryption software, to see if this is permitted,
ZLib Version: 1.2.8

The .5, Gowernment Department of Commerce, Bureau of Industry and Security [BIS), has classified this software as

Export Commodity Control Number (ECCH ) SDO02.C.1, which includes information security software using or

perfarming cryptoegraphic functions with asymmetric algorithms, The farm and manner of this distribution makes it

Tests eligible for export under the Licenss Excaption ENC Technology Software Unrestricted (TSU) exception [see the BIS
Export Administration Regulations, Section 740,13} for both object code and source code.

HTTPS Test The authars of the represented software packages and and the Apache Haus, are not lizble far any violations you
miake. Be careful, it is solely your responsibility.

m The Apache Haus is not affilisted with, or endorsad by, the Apache Software Foundation, wered h_‘f
Apache HTTP Server, Apache, and the Apache feather lego are trademarks of The Apache Software i
Foundation. = APAC I I

Copyright & 2008-2016 The Apache Haus, All Rights Reserved.

Press ctrl+c in the cmd-console for stopping httpd.


http://localhost/

Finally, you have installed your own local apache httpd static web server.

2.2 Installation and enabling of Adobe AEM
Dispatcher module.

Download corresponding dispatcher module from next page:

https://www.adobeaemcloud.com/content/companies/public/adobe/dispatcher/dispatcher.html

Windows x86

'-'n'-in.::l n;:.--s-x EE CpenS-E-L 1 6*:
We assume that we have downloaded dispatcher-apache2.2-windows-x86-4.2.0.zip.

Extract archive and put disp_apache2.2.dll from it to C:\Apache22\modules directory.

Add next settings to the end of the httpd configuration C:\Apache22\confihttpd.conf:

LoadModule dispatcher module modules\disp apache2.2.dll

<IfModule disp_apache2.c>
DispatcherConfig conf/dispatcher.any
DispatcherLog logs/dispatcher.log
DispatcherLoglLevel 3
DispatcherNoServerHeader O
DispatcherDeclineRoot 0
DispatcherUseProcessedURL 1
DispatcherPassError 0

</IfModule>

<Directory />
<IfModule disp apache2.c>
SetHandler dispatcher-handler
ModMimeUsePathInfo On
</IfModule>

Options FollowSymLinks
AllowOverride None
</Directory>

The 1st entry loads dispatcher module. You must set correct name of your dispatcher dll
such as modules\disp_apache2.2.dll in our case.


https://www.adobeaemcloud.com/content/companies/public/adobe/dispatcher/dispatcher.html

The 2nd “ifmodule” block sets some initial properties for the dispatcher:

e DispatcherConfig - set full name of the dispatcher configuration file. It is
conf/dispatcher.any in our case. You may copy default dispatcher.any file from
the early extracted dispatcher archive.

e DispatcherlLog - set full name of the dispatcher’s log file. It is
logs/dispatcher.log in our case.

e DispatcherLoglLevel - log level for the log file from the most briefly O (errors) to
the most detailed 3 (debug). It is debug level in our case.

e DispatcherUseProcessedURL - defines whether to use pre-processed URLs for
all further processing by Dispatcher:

o 0 - use the original URL passed to the web server.

o 1 -the dispatcher uses the URL already processed by the handlers that
precede the dispatcher (i.e. mod_rewrite) instead of the original URL
passed to the web server.

The 3rd “directory” block sets for the dispatcher to handle the incoming requests for the
complete website.

Finally, all installations for httpd and dispatcher have been completed. Restart your httpd server
because configuration changes are not applied during working of the httpd server and are
applied only during httpd server startup. If you see that logs/dispatcher.log exists then you
have correct worked httpd server and correct enabled dispatcher module.

Summary.

For setting up your dispatcher environment you have to install next software:
1. One of three supported static web servers;
2. Enable dispatcher module on such installed static web server.

Detailed and useful documentation you can find on these pages:
https://docs.adobe.com/docs/en/dispatcher/disp-install.html
https://docs.adobe.com/docs/en/aem/6-0/deploy/technical-requirements.html#par_title 15



https://docs.adobe.com/docs/en/dispatcher/disp-install.html
https://docs.adobe.com/docs/en/aem/6-0/deploy/technical-requirements.html#par_title_15

Part 3. Environment initial setting for enable cache.

In this part we will set initial configuration for dispatcher. Such settings will allow dispatcher to
cache content from AEM publish instance.

By default resources will be cached if next conditions is completed:
e HTTP request method is GET;
e Request URL has extension (for example, *.html or *.xml);
e Request URL has no query string (there are no parameters after extension);
e Request has no “Authorization” header (unless AllowAuthorized is 1).

Settings are configured by the dispatcher configuration file. In our demonstration case this file is
conf/dispatcher.any. The configuration file contains a series of single valued or multi-valued
properties that control behavior of the dispatcher:

e property names are prefixed with a forward slash (“/);

e multi-valued properties enclose child items using braces (“{}");

e comments begin from ‘# symbol.

3.1 Renders.

First of all you should set renders for dispatcher. Renders are AEM instances from which
dispatcher receives content that may be cached. If you set more than one render in the
configuration file then dispatcher will use load balancing between these AEM instances. In our
case we have to set only one render that is our publish AEM instance.

/renders
{
/rend01
{
/hostname "localhost"
/port "4503"
}

You may restart httpd and check that dispatcher is able to request resources from publish AEM
instance. For example, if you have worked page
http://localhost:4503/content/geometrixx/en.html

then the dispatcher should work at the page http://localhost/content/geometrixx/en.html. Note



http://localhost:4503/content/geometrixx/en.html
http://localhost/content/geometrixx/en.html

that we don’t set the port in request url because dispatcher (more precisely, httpd) works on the
port 80 which is default for the browsers.

3.2 Filters.

User the ffilter section to specify the HTTP requests that dispatcher accepts. All other requests
are sent back to the web server with a 404 error code (page not found). Let allow access to all
resources for our demonstration case.

/filter

{
/0001 { /type "allow" /glob "*" }

}
Filters types: “allow” or “deny”.
Globs will be compared against the entire request line, e.g.:
/0001 { /type "allow" /glob "* /index.html *" }

This glob matches request “GET /index.html HTTP/1.1” but not “GET /index.html?a=b
HTTP/1.17.

” W ” W ” o«

Except “globs” you may use separately “url”, “method”, “protocol”,

” o ” o« ” o«

except “url” you may use “path”, “selectors”, “extension”, “suffix”.

extension”. Additionally

When multiple filters patterns apply to a request then the last filter pattern that applies is
effective.

After setting above mentioned filter you may restart httpd and check that dispatcher has access
to all resources of the publish instance. Of course you should deny access for some resources
due to security purposes in real production environment but in our demonstration case we
simply have allowed access to all resources.



3.3 Cache

Cache section determines resources that will be cached by dispatcher. This section has block of
the rules which are quite similar to the filters rules. Except rules cache section contains some
additional settings. For example, /docroot determines location of the directory where cached
files are stored. The value must be the exact same path as the document root of the web server
so that dispatcher and the web server handle the same files.

For our demonstration purposes let’s set docroot for storing cache and allow caching of all
resources which are received from our render (publish instance):

/cache
{
/docroot "/Apache22/htdocs"
/rules
{
/0000
{
/glob "m
/type "allow"
}

After these changes you may restart httpd, open new private browser window for unauthorized
access without using “Authorization” header (chrome ctrl+shift+n, firefox ctrl+shift+p) and visit
next page: http://localhost/content/geometrixx/en/products.html. Cached resources should
appear inside htdocs directory. Resources have the url-like hierarchy: directories form paths to
the resources and static html-files contain rendered content of the resource.



http://localhost/content/geometrixx/en/products.html

3.4 Headers

You saw that there is only html content in cached html-files. But what should we do if we want to
cache response headers which received from renders? For example, if response from renders
contains “Content-Type” header which determine encoding then html-content without this
header may not be displayed correctly without precise encoding settings. For such purposes
dispatcher configuration file has /headers block inside /cache sections. Let’'s set some popular
and useful headers for caching:

/cache
{
/headers

{
"Cache-Control"
"Content-Disposition"
"Content-Type"
"Expires"
"Last-Modified"
"X-Content-Type-Options"
}

After changing headers in your dispatcher configuration file delete all cache from htdocs
directory and restart httpd then again visit page
http://localhost/content/geometrixx/en/products.html. Finally you may find not only cached
html-file products.html in htdocs/content/geometrixx/en directory but there is
products.html.h near the original html-file. This *.h file contains headers for corresponding
cached html-file.

Summary

You may quickly enable cache by the next initial settings of the dispatcher configuration file:
1. setrenders;
2. setfilters;
3. set htdocs and rules for cache sections;
4. set headers for storing http-headers.

Detailed and useful documentation you can find on this page:


http://localhost/content/geometrixx/en/products.html

https://docs.adobe.com/docs/en/dispatcher/disp-config.html

4. Cache invalidation.

Invalidation is mechanism for pointing obsolete cached resources. There are some tools for
automatic invalidation and manual invalidation. But firstly let’s set initial configuration for
invalidation section of the dispatcher configuration file then study how invalidation works at the
low level and finally return to study tools for invalidation.

4.1 Invalidation section initial settings.

Inside /cache section there is /invalidate block which determines cached files that may be
automatically invalidated when content is updated. For example, the following configuration
invalidates all HTML pages:

/cache
{

/invalidate

{
/0000 { /glob "*" /type "deny" }
/0001 { /glob "*.html" /type "allow" }

With automatic invalidation dispatcher doesn’t delete cached files after updating content but
checks their validity when they are next requested. Documents in the cache that are not
auto-invalidated will remain in the cache until a content update explicitly deletes them. For our
demonstration purposes let allow for all cache be invalidated automatically:

/cache
{
/invalidate
{
/0000 { /glob "*" /type "allow" }
}


https://docs.adobe.com/docs/en/dispatcher/disp-config.html

Restart httpd server after updating /invalidate section for using new changes.

4.2 Invalidation in depth.

At the low level dispatcher use special empty files which are named by default “.stat”. By default
setting is used /statfileslevel "0" which means that there is only one stat-file is used and is
placed at the root of htdocs directory. If modification time of stat file is newer than modification
time of the resource then dispatcher consider such resource are obsolete or are invalidated.

For example we have the next cached resources after requesting the page
http://localhost/content/geometrixx/en/products.html :

products 7712/2016 18:39
¢ products.htrml 7/12/2016 18:39
|| preducts.htmlh 7/12/2016 18:39

Let’s invalidate them by the low level mechanism of the stat-files. Create empty file with name
“.stat” at the root of your htdocs directory:

content 7/12/2016 18:39

ete 7/12/2016 18:39
| | stat 71272016 15:31
m apachehaus.ico 1/11/2015 23:40
€ indexhtml 5772016 06:02

You may see that stat-file modification time is newer than cached resources modification time.
That means for the dispatcher that all resources are obsolete. This is invalidation mechanism at
the low level in depth. After creating such stat-file if we will visit again the page
http://localhost/content/geometrixx/en/products.html then requested cached resources will be
updated:

products 7/12/2016 18:39
| & products.html 1/12/201619:37
|| products.html.h 7/12/2016 1937

This example demonstrates default invalidation scheme with /statfileslevel "0". Let’s study how
we may configure invalidation more detailed with help of /statfileslevel setting.


http://localhost/content/geometrixx/en/products.html
http://localhost/content/geometrixx/en/products.html

4.3 Setting /statfileslevel.

You may use /statfileslevel property of the dispatcher configuration file to selectively invalidate
cached files according to their path. There are some rules for /statfileslevel property
mechanism:

e Dispatcher creates .stat files in each folder from the docroot folder down to the level that
you specify. The docroot folder is level 0.

e When afile is updated dispatcher locates the folder on the file path that is at the
statfileslevel and invalidates all files below that folder.

e |[f level of the updated file is less than statfileslevel then all files in such folder are
invalidated. Files below that folder are not invalidated.

e When afile is updated then all files from file folder up to the root level inclusive will be
invalidated.

For better understanding of the /statfileslevel rules let’s consider a couple examples. Our
default demonstration case with /statfileslevel “0” is looked like that:

content
campaigns
geometric
default_teaser
4 || _jor_content
4 | W par
image.img.jpg
dam
geometric
movies
geometrix
4 |4 en
4 products
4 || _jor_content
4 par
6_121967705607%.img.jpg
image.irmg.jpg

image_0.img.jpg

e 2.img.jpqg



There is only one stat-file at the root folder of our docroot. And the scope of responsibility of that
stat-file is all file-tree under htdocs. If any file from this tree has older modification time then
stat-file modification time then dispatcher consider such file is invalidated.

If we set Istatfileslevel “4” then invalidation works like that:

E

htdocs

.stat (0)

:

content _stat (1)

:

campaigns stat [2)

f

geometrioc  stat (3)

il

default_teaser stat (4)

4 || _jor_content

. par
image.img.jpg

a

|.-

dam .stat (2)

|4

geometrice .stat (3)

| MOVIES

.stat [4)

B

geometrix | stat {(2)

|4

en .stat (3)

Fl

d

products

| _jer_content

.stat {4)

]

par
6_1219677056079.img.jpg
image.img.jpg
image_(L.img.jpg

image_2.img.jpg

There are stat-files at all levels from 0 (root) to 4 inclusive.

Stat-files at levels less than 4 have the scope of responsibility with only directory with this
stat-file. That means if stat-file inside content/geometrixx/en folder is newer than any file from
this folder then such files are invalidated but validation of all files from all other folders is
determined by other stat-files.

Stat-files at the level with value of statfileslevel property (level 4 in our case) only have the
scope of responsibility with all underlying tree which begins from folder with this stat-file and
expands down to lower levels of the file tree. That means that if stat-file inside
content/geometrixx/en/products folder has modification time newer than any file from underlying
tree including products folder then dispatcher considers such files are invalidated. Validation of
all files which is not located in this file tree is determined by other stat-files.



4.4 Automatic invalidation. Flush agents.

For automatic invalidation purposes you may enable author or publish flush agents. It's
recommended to use publish flush agent for more robust auto-invalidation because using author
flush agent may cause next issues:

e The Dispatcher must be reachable from the authoring instance. If your network (e.g. the
firewall) is configured such that access between the two is restricted this may not be the
case.

e Publication and cache invalidation take place at the same time. Depending on the timing
a user may request a page just after it was removed from the cache and just before the
new page is published. AEM now returns the old page and the Dispatcher caches it
again. This is more of an issue for large sites.

Publish flush agent is located at http://localhost:4503/etc/replication/agents.publish/flush.html

- Dispatcher Flush (flush)

Example agent that is triggered on modification and sends flush requests to the dispatcher,

Agent is disabled. Replicating to http:f flocalhost:8000/dispatcher/invalidate.cache

Queue is not active

Agent is ignored on normal replication

Agent is triggered when receiving replication events

View log

Test Connection

Settings Edit

To enable your publish flush agent click “Edit” button and set “Enabled” checkbox:


http://localhost:4503/etc/replication/agents.publish/flush.html

Settings Transport Promy Extended Triggers Batch

Mame Dispatcher Flush

informative name of this agent

Description Example zgent that is triggered on modification and
sends flush requests to the dispatcher.

Enzbled o

Update URI port on the Transport tab and set it value to 80:

Settings || Transport Prowy Extended | Triggers Batch

URI | http://localhost:B0/ dispatcher/invalidate.cache

bmrmmd o mens bdbm o ralbhnrd AT Thim frae i e

Save your updates and you will see that publish flush agent has been enabled:

[ Dispatcher Flush (flush)

Example agent that is triggered on modification and sends flush requests to the dispatcher.

Agent is enabled. Replicating to http://localhost:80/ dispatcher/invalidate.cache

4.5 Manual invalidation requests.

You may send next requests manually for invalidation your cached resources:

e for delete cached files

POST /dispatcher/invalidate.cache HTTP/1.1
CQ-Action: Activate

CQ-Handle: path-pattern

Content-Length: 0

o for delete and recache files

POST /dispatcher/invalidate.cache HTTP/1.1
CQ-Action: Activate

Content-Type: text/plain

CQ-Handle: path-pattern

Content-Length: numchars in bodypage path0
Page pathl

Page pathn



Summary

Detailed and useful documentation you can find on these pages:
http://docs.adobe.com/docs/en/dispatcher/disp-config.html
http://docs.adobe.com/docs/en/dispatcher/page-invalidate.html

5. Useful tools

There are a few useful tools for advanced using of the dispatcher:
e static web servers tools
o rewrite module
e AEM tools for mappings
o repository mappings tree /etc/map

o ResourceProvider Interface

5.1 Rewrite module

You may enable rewrite module by uncommenting next line in your httpd.conf file:
LoadModule rewrite module modules/mod rewrite.so

Initial settings for rewrite module may look like:
<IfModule mod rewrite.c>
RewritekEngine On
RewritelLog "logs/rewrite.log"
RewriteLogLevel 9

# your rule 1
# your rule 2
# your rule n

</IfModule>


http://docs.adobe.com/docs/en/dispatcher/disp-config.html
https://docs.adobe.com/docs/en/dispatcher/page-invalidate.html

Simple example of using rewrite module:
RewriteRule "~/en(.*)\.html$ /content/geometrixx/en$l.html [R]
This rewrite rule provides external redirect.

Detailed and useful documentation:
http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html

5.2 Repository mappings tree /etc/map.

Resource mapping is used to define redirects, vanity URLs and virtual hosts for AEM:
e /etc/map - resource mappings tree;
e /etc/map/http - resource mappings for http requests.
Mappings definitions of your AEM instance are at http://host:port/system/console/jcrresolver

Example: mapping that prefixes any request to http://localhost:4503 with /content prefix:
1. Create node under /etc/map/http with type “sling:Mapping” with name “localhost_any”;
2. Add properties to this node:
a. Name “sling:match”, type “String”, value “localhost.4503/”;
b. Name “sling:internalRedirect”, type “String”, value “/content/”.

This mapping will handle a request such as http://localhost:4503/geometrixx/en/products.html as
if hitp://localhost:4503/content/geometrixx/en/products.html is requested. This example brokes
requests to clientlibs and to other resources are placed outside of /content resource tree.

Detailed and useful documentation:
https://docs.adobe.com/docs/en/cq/5-6-1/deploying/resource_mapping.html
https://sling.apache.org/documentation/the-sling-engine/mappings-for-resource-resolution.html

5.3 ResourceProvider interface
You may use ResourceProvider interface for creation of your own resource trees.
public interface ResourceProvider {

Resource getResource(ResourceResolver var1, String var2);
Iterator<Resource> listChildren(Resource var1);


http://httpd.apache.org/docs/2.2/mod/mod_rewrite.html
http://localhost:4503/
http://localhost:4503/geometrixx/en/products.html
http://localhost:4503/content/geometrixx/en/products.html
https://docs.adobe.com/docs/en/cq/5-6-1/deploying/resource_mapping.html

You may set root paths for your implementation of the ResourceProvider:

@Properties({
@Property(
label = "Root paths",
description = "Root paths this Sling Resource Provider will respond to",
name = ResourceProvider.ROOTS,
value = {"/content/mount/samples"})

1)



